Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Zoolog Sci ; 41(1): 60-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587518

RESUMO

Ovarian follicle development is an essential process for continuation of sexually reproductive animals, and is controlled by a wide variety of regulatory factors such as neuropeptides and peptide hormones in the endocrine, neuroendocrine, and nervous systems. Moreover, while some molecular mechanisms underlying follicle development are conserved, others vary among species. Consequently, follicle development processes are closely related to the evolution and diversity of species. Ciona intestinalis type A (Ciona rubusta) is a cosmopolitan species of ascidians, which are the closest relative of vertebrates. However, unlike vertebrates, ascidians are not endowed with the hypothalamus-pituitary-gonadal axis involving pituitary gonadotropins and sexual steroids. Combined with the phylogenetic position of ascidians as the closest relative of vertebrates, such morphological and endocrine features suggest that ascidians possess both common and species-specific regulatory mechanisms in follicle development. To date, several neuropeptides have been shown to participate in the growth of vitellogenic follicles, oocyte maturation of postvitellogenic follicles, and ovulation of fully mature follicles in a developmental stage-specific fashion. Furthermore, recent studies have shed light on the evolutionary processes of follicle development throughout chordates. In this review, we provide an overview of the neuropeptidergic molecular mechanism in the premature follicle growth, oocyte maturation, and ovulation in Ciona, and comparative views of the follicle development processes of mammals and teleosts.


Assuntos
Ciona intestinalis , Neuropeptídeos , Animais , Feminino , Filogenia , Ovulação , Folículo Ovariano , Mamíferos
2.
Front Endocrinol (Lausanne) ; 14: 1260600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842312

RESUMO

Invertebrates lack hypothalamic-pituitary-gonadal axis, and have acquired species-specific regulatory systems for ovarian follicle development. Ascidians are marine invertebrates that are the phylogenetically closest living relatives to vertebrates, and we have thus far substantiated the molecular mechanisms underlying neuropeptidergic follicle development of the cosmopolitan species, Ciona intestinalis Type A. However, no ovarian factor has so far been identified in Ciona. In the present study, we identified a novel Ciona-specific peptide, termed PEP51, in the ovary. Immunohistochemical analysis demonstrated the specific expression of PEP51 in oocyte-associated accessory cells, test cells, of post-vitellogenic (stage III) follicles. Immunoelectron microscopy revealed that PEP51 was localized in the cytosol of test cells in early stage III follicles, which lack secretory granules. These results indicate that PEP51 acts as an intracellular factor within test cells rather than as a secretory peptide. Confocal laser microscopy verified that activation of caspase-3/7, the canonical apoptosis marker, was detected in most PEP51-positive test cells of early stage III. This colocalization of PEP51 and the apoptosis marker was consistent with immunoelectron microscopy observations demonstrating that a few normal (PEP51-negative) test cells reside in the aggregates of PEP51-positive apoptotic test cells of early stage III follicles. Furthermore, transfection of the PEP51 gene into COS-7 cells and HEK293MSR cells resulted in activation of caspase-3/7, providing evidence that PEP51 induces apoptotic signaling. Collectively, these results showed the existence of species-specific ovarian peptide-driven cell metabolism in Ciona follicle development. Consistent with the phylogenetic position of Ciona as the closest sister group of vertebrates, the present study sheds new light on the molecular and functional diversity of the regulatory systems of follicle development in the Chordata.


Assuntos
Ciona intestinalis , Animais , Feminino , Ciona intestinalis/genética , Filogenia , Caspase 3/genética , Aminoácidos/metabolismo , Peptídeos/metabolismo , Folículo Ovariano , Vertebrados
3.
Eur J Case Rep Intern Med ; 10(1): 003735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819651

RESUMO

A 32-year-old woman presented to the outpatient clinic with persistent fever, anterior neck pain, and palpitations over the past week which developed 2 days after she had received the first dose of the Pfizer/BioNTech SARS-CoV-2 mRNA vaccine. On examination, the patient's heart rate was 140 beats per minute and the thyroid gland was tender on palpation. Laboratory studies showed a low serum TSH level with elevated free thyroxine. Thyroid ultrasound revealed low-echoic lesions compatible with the site of tenderness. The patient was diagnosed with subacute thyroiditis and treatment was initiated with acetaminophen and propranolol, which resulted in symptom resolution within 2 weeks. Clinicians should be aware that subacute thyroiditis may occur within a few days following COVID-19 vaccination, especially in patients with anterior cervical pain with no significant abnormal pharyngeal findings and/or severe palpitations, because differentiating them from early non-specific adverse reactions can be challenging. LEARNING POINTS: Cases of subacute thyroiditis after vaccination, including against COVID-19, have been increasingly reported.Subacute thyroiditis should be considered in patients with anterior cervical pain with no significant abnormal pharyngeal findings and/or severe palpitations after COVID-19 vaccination because these can be diagnostic clues.It is important to note that this condition can occur as early as a few days after vaccination, in order to avoid diagnostic pitfalls.

4.
Front Endocrinol (Lausanne) ; 13: 858885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321341

RESUMO

Omics studies contribute to the elucidation of genomes and profiles of gene expression. In the ascidian Ciona intestinalis Type A (Ciona robusta), mass spectrometry (MS)-based peptidomic studies have detected numerous Ciona-specific (nonhomologous) neuropeptides as well as Ciona homologs of typical vertebrate neuropeptides and hypothalamic peptide hormones. Candidates for cognate G protein-coupled receptors (GPCRs) for these peptides have been found in the Ciona transcriptome by two ways. First, Ciona homologous GPCRs of vertebrate counterparts have been detected by sequence homology searches of cognate transcriptomes. Second, the transcriptome-derived GPCR candidates have been used for machine learning-based systematic prediction of interactions not only between Ciona homologous peptides and GPCRs but also between novel Ciona peptides and GPCRs. These data have ultimately led to experimental evidence for various Ciona peptide-GPCR interactions. Comparative transcriptomics between the wildtype and Ciona vasopressin (CiVP) gene-edited Ciona provide clues to the biological functions of CiVP in ovarian follicular development and whole body growth. Furthermore, the transcriptomes of follicles treated with peptides, such as Ciona tachykinin and cionin (a Ciona cholecystokinin homolog), have revealed key regulatory genes for Ciona follicle growth, maturation, and ovulation, eventually leading to the verification of essential and novel molecular mechanisms underlying these biological events. These findings indicate that omics studies, combined with artificial intelligence and single-cell technologies, pave the way for investigating in greater details the nervous, neuroendocrine, and endocrine systems of ascidians and the molecular and functional evolution and diversity of peptidergic regulatory networks throughout chordates.


Assuntos
Ciona intestinalis , Neuropeptídeos , Hormônios Peptídicos , Animais , Inteligência Artificial , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Feminino , Neuropeptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/metabolismo
5.
Intern Med ; 61(3): 357-360, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334568

RESUMO

We herein report a case of large-vessel vasculitis in a 57-year-old woman who developed an intermittent fever and weight loss. While contrast-enhanced computed tomography was noncontributory, positron emission tomography-computed tomography (PET-CT) revealed the diffuse, intense uptake of fluorodeoxyglucose (FDG) in the aorta and its branches. Although she had no signs of relapse after successful oral corticosteroid therapy, PET-CT at 30 months revealed a persistent FDG uptake in the large vessels, which warranted regular follow-up imaging for vascular complications. In cases with an intense FDG uptake at the diagnosis, PET-CT follow-up after clinical remission may help predict the risk of relapse and vascular complications.


Assuntos
Arterite , Arterite de Células Gigantes , Aorta , Feminino , Fluordesoxiglucose F18 , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X
6.
Bone Joint J ; 104-B(1): 97-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34969274

RESUMO

AIMS: To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. METHODS: In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism. RESULTS: Of the 377 patients used for model derivation, 58 (15%) had an acute AVF postoperatively. The following preoperative measures on multivariable analysis were summarized in the five-point AVA score: intravertebral instability (≥ 5 mm), focal kyphosis (≥ 10°), duration of symptoms (≥ 30 days), intravertebral cleft, and previous history of vertebral fracture. Internal validation showed a mean optimism of 0.019 with a corrected AUC of 0.77. A cut-off of ≤ one point was chosen to classify a low risk of AVF, for which only four of 137 patients (3%) had AVF with 92.5% sensitivity and 45.6% specificity. A cut-off of ≥ four points was chosen to classify a high risk of AVF, for which 22 of 38 (58%) had AVF with 41.5% sensitivity and 94.5% specificity. CONCLUSION: In this study, the AVA score was found to be a simple preoperative method for the identification of patients at low and high risk of postoperative acute AVF. This model could be applied to individual patients and could aid in the decision-making before vertebral augmentation. Cite this article: Bone Joint J 2022;104-B(1):97-102.


Assuntos
Técnicas de Apoio para a Decisão , Fraturas por Compressão/etiologia , Complicações Pós-Operatórias/etiologia , Fraturas da Coluna Vertebral/etiologia , Vertebroplastia , Idoso , Idoso de 80 Anos ou mais , Feminino , Fraturas por Compressão/diagnóstico por imagem , Humanos , Japão , Masculino , Complicações Pós-Operatórias/diagnóstico por imagem , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Sensibilidade e Especificidade , Fraturas da Coluna Vertebral/diagnóstico por imagem
7.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198405

RESUMO

Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproduction via the hypothalamus-pituitary-gonad axis (HPG axis) in vertebrates. GnRHs and their receptors (GnRHRs) are also conserved in invertebrates lacking the HPG axis, indicating that invertebrate GnRHs do not serve as "gonadotropin-releasing factors" but, rather, function as neuropeptides that directly regulate target tissues. All vertebrate and urochordate GnRHs comprise 10 amino acids, whereas amphioxus, echinoderm, and protostome GnRH-like peptides are 11- or 12-residue peptides. Intracellular calcium mobilization is the major second messenger for GnRH signaling in cephalochordates, echinoderms, and protostomes, while urochordate GnRHRs also stimulate cAMP production pathways. Moreover, the ligand-specific modulation of signal transduction via heterodimerization between GnRHR paralogs indicates species-specific evolution in Ciona intestinalis. The characterization of authentic or putative invertebrate GnRHRs in various tissues and their in vitro and in vivo activities indicate that invertebrate GnRHs are responsible for the regulation of both reproductive and nonreproductive functions. In this review, we examine our current understanding of and perspectives on the primary sequences, tissue distribution of mRNA expression, signal transduction, and biological functions of invertebrate GnRHs and their receptors.


Assuntos
Hipotálamo/metabolismo , Invertebrados/metabolismo , Receptores LHRH/metabolismo , Animais , Evolução Biológica , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Ciona intestinalis , AMP Cíclico/metabolismo , Equinodermos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Células HEK293 , Humanos , Ligantes , Masculino , Cadeias de Markov , Moluscos , Transdução de Sinais , Distribuição Tecidual , Urocordados
8.
BMJ Open ; 10(10): e041125, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046478

RESUMO

INTRODUCTION: Whether medication optimisation improves clinical outcomes in elderly individuals remains unclear. The current study aims to evaluate the effect of multidisciplinary team-based medication optimisation on survival, rehospitalisation and unscheduled hospital visits in elderly patients. METHODS AND ANALYSIS: We report the protocol of a single-centre, open-label, randomised controlled trial. The enrolled subjects will be medical inpatients, aged 65 years or older, admitted to a community hospital and receiving five or more regular medications. The participants will be randomly assigned to receive either an intervention for medication optimisation or the usual care. The intervention will consist of a multidisciplinary team-based medication review, followed by a medication optimisation proposal based on the Screening Tool of Older Persons' potentially inappropriate Prescriptions/Screening Tool to Alert doctors to the Right Treatment criteria and an implicit medication optimisation protocol. Medication optimisation summaries will be sent to primary care physicians and community pharmacists on discharge. The primary outcome will be a composite of death, unscheduled hospital visits and rehospitalisation until 48 weeks after randomisation. Secondary outcomes will include each of the primary endpoints, the number of prescribed medications, quality of life score, level of long-term care required, drug-related adverse events, death during hospitalisation and falls. Participants will be followed up for 48 weeks with bimonthly telephone interviews to assess the primary and secondary outcomes. A log-rank test stratified by randomisation factors will be used to compare the incidence of the composite endpoint. The study was initiated in 2019 and a minimum of 500 patients will be enrolled. ETHICS AND DISSEMINATION: The study protocol has been approved by the Institutional Ethical Committee of St. Marianna University School of Medicine (No. 4129). The results of the current study will be submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER: UMIN000035265.


Assuntos
Geriatria , Conduta do Tratamento Medicamentoso , Idoso , Idoso de 80 Anos ou mais , Hospitalização , Humanos , Prescrição Inadequada , Pacientes Internados , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Results Probl Cell Differ ; 68: 107-125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598854

RESUMO

The critical phylogenetic position of the ascidian, Ciona intestinalis, as the closest relative of vertebrates, suggested its potential applicability as a model organism in a wide variety of biological events including the nervous, neuroendocrine, and endocrine regulation. To date, approximately 40 neuropeptides and/or peptide hormones and several cognate receptors have been identified. These peptides are categorized into two types: (1) orthologs of vertebrate peptides, such as cholecystokinin, GnRH, tachykinin, vasopressin, and calcitonin, and (2) novel family peptides such as LF peptides and YFL/V peptides. Ciona GnRH receptors (Ci-GnRHR) were found to be multiplicated in the Ciona-specific lineages and to form unique heterodimers between Ci-GnRHR1 and R4 and between Ci-GnRHR2 and R4, leading to fine-tuning of the generation of second messengers. Furthermore, Ciona tachykinin was shown to regulate a novel protease-associated follicle growth pathway. These findings will pave the way for the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of invertebrate deuterostomes and/or chordates. In this chapter, we provide an overview of primary sequences, functions, and evolutionary aspects of neuropeptides, peptide hormones, and their receptors in C. intestinalis.


Assuntos
Ciona intestinalis/metabolismo , Neuropeptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Filogenia
10.
Cell Tissue Res ; 377(3): 293-308, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31079207

RESUMO

The digestive system is responsible for nutrient intake and defense against pathogenic microbes. Thus, identification of regulatory factors for digestive functions and immune systems is a key step to the verification of the life cycle, homeostasis, survival strategy and evolutionary aspects of an organism. Over the past decade, there have been increasing reports on neuropeptides, their receptors, variable region-containing chitin-binding proteins (VCBPs) and Toll-like receptors (TLRs) in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomes and genome database-searching detected not only Ciona orthologs or prototypes of vertebrate peptides and their receptors, including cholecystokinin, gonadotropin-releasing hormones, tachykinin, calcitonin and vasopressin but also Ciona-specific neuropeptides including Ci-LFs and Ci-YFVs. The species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors has also been revealed. These findings shed light on the remarkable significance of ascidians in investigations of the evolution and diversification of the peptidergic systems in chordates. In the defensive systems of C. intestinalis, VCBPs and TLRs have been shown to play major roles in the recognition of exogenous microbes in the innate immune system. These findings indicate both common and species-specific functions of the innate immunity-related molecules between C. intestinalis and vertebrates. In this review article, we present recent advances in molecular and functional features and evolutionary aspects of major neuropeptides, their receptors, VCBPs and TLRs in C. intestinalis.


Assuntos
Ciona intestinalis , Sistema Digestório , Neuropeptídeos , Receptores de Peptídeos , Receptores Toll-Like , Animais , Ciona intestinalis/imunologia , Ciona intestinalis/metabolismo , Sistema Digestório/imunologia , Sistema Digestório/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Filogenia , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Especificidade da Espécie , Receptores Toll-Like/química , Receptores Toll-Like/genética
11.
Inorg Chem ; 57(11): 6648-6657, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29790349

RESUMO

We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV2O4, FeV2O4, and MnCr2O4. At 1200-1800 °C, MgV2O4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V2O3, and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV2O4 Sp transforms to CT-type FeV2O4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V2O3. MnCr2O4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV2O4 and FeV2O4 and CF-type MnCr2O4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B3+O6 octahedra (B3+ = V3+ and Cr3+) running parallel to one of orthorhombic cell axes. A relatively large A2+ cation (A2+ = Mg2+, Fe2+, and Mn2+) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A2+ cation distances of CT-type MgV2O4 and FeV2O4 and CF-type MnCr2O4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A2+ cations, respectively. A relationship between cation sizes of VIIIA2+ and VIB3+ and crystal structures (CF- and CT-types) of A2+B23+O4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A2+B23+O4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIIIA2+ and 0.55-1.1 Å for VIB3+, whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIIIA2+ and 0.6-0.65 Å for VIB3+. This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination number for A2+ cation than that of CF-type.

13.
PLoS One ; 12(11): e0187711, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095955

RESUMO

G protein-coupled receptors (GPCRs) have been found to form heterodimers and modulate or fine-tune the functions of GPCRs. However, the involvement of GPCR heterodimerization and its functional consequences in gonadal tissues, including granulosa cells, have been poorly investigated, mainly due to the lack of efficient method for identification of novel GPCR heterodimers. In this paper, we identified a novel GPCR heterodimer between prostaglandin E2 (PGE2) receptor 2 (EP2) and calcitonin (CT) receptor (CTR). High-resolution liquid chromatography (LC)-tandem mass spectrometry (MS/MS) of protease-digested EP2-coimmunoprecipitates detected protein fragments of CTR in an ovarian granulosa cell line, OV3121. Western blotting of EP2- and CTR-coimmunoprecipitates detected a specific band for EP2-CTR heterodimer. Specific heterodimerization between EP2 and CTR was also observed by fluorescence resonance energy transfer analysis in HEK293MSR cells expressing cyan- and yellow-fluorescent protein-fused EP2 and CTR, respectively. Collectively, these results provided evidence for heterodimerization between EP2 and CTR. Moreover, Ca2+ mobilization by CT was approximately 40% less potent in HEK293MSR cells expressing an EP2-CTR heterodimer, whereas cAMP production by EP2 or CT was not significantly altered compared with cells expressing EP2- or CTR alone. These functional analyses verified that CTR-mediated Ca2+ mobilization is specifically decreased via heterodimerization with EP2. Altogether, the present study suggests that a novel GPCR heterodimer, EP2-CTR, is involved in some functional regulation, and paves the way for investigation of novel biological roles of CTR and EP2 in various tissues.


Assuntos
Receptores da Calcitonina/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Animais , Dimerização , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-28932208

RESUMO

Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs) are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs) are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate GnRHs have biological roles other than the regulation of reproductive functions. Moreover, recent molecular phylogenetic analysis suggests that adipokinetic hormone (AKH), corazonin (CRZ), and AKH/CRZ-related peptide (ACP) belong to the GnRH superfamily but has led to the different classifications of these peptides and receptors using different datasets including the number of sequences and structural domains. In this review, we provide current knowledge of, and perspectives in, molecular basis and evolutionary aspects of the GnRH, AKH, CRZ, and ACP.

15.
Chembiochem ; 17(24): 2324-2333, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27685371

RESUMO

The transfer of photoenergized electrons from extracellular photosensitizers across a bacterial cell envelope to drive intracellular chemical transformations represents an attractive way to harness nature's catalytic machinery for solar-assisted chemical synthesis. In Shewanella oneidensis MR-1 (MR-1), trans-outer-membrane electron transfer is performed by the extracellular cytochromes MtrC and OmcA acting together with the outer-membrane-spanning porin⋅cytochrome complex (MtrAB). Here we demonstrate photoreduction of solutions of MtrC, OmcA, and the MtrCAB complex by soluble photosensitizers: namely, eosin Y, fluorescein, proflavine, flavin, and adenine dinucleotide, as well as by riboflavin and flavin mononucleotide, two compounds secreted by MR-1. We show photoreduction of MtrC and OmcA adsorbed on RuII -dye-sensitized TiO2 nanoparticles and that these protein-coated particles perform photocatalytic reduction of solutions of MtrC, OmcA, and MtrCAB. These findings provide a framework for informed development of strategies for using the outer-membrane-associated cytochromes of MR-1 for solar-driven microbial synthesis in natural and engineered bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Corantes/química , Grupo dos Citocromos c/metabolismo , Titânio/química , Catálise , Transporte de Elétrons , Amarelo de Eosina-(YS)/química , Compostos Férricos/química , Mononucleotídeo de Flavina/química , Luz , Nanopartículas Metálicas/química , Oxirredução , Fármacos Fotossensibilizantes/química , Shewanella
16.
Gen Comp Endocrinol ; 227: 101-8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26031189

RESUMO

Ascidians are the closest phylogenetic neighbors to vertebrates and are believed to conserve the evolutionary origin in chordates of the endocrine, neuroendocrine, and nervous systems involving neuropeptides and peptide hormones. Ciona intestinalis harbors various homologs or prototypes of vertebrate neuropeptides and peptide hormones including gonadotropin-releasing hormones (GnRHs), tachykinins (TKs), and calcitonin, as well as Ciona-specific neuropeptides such as Ciona vasopressin, LF, and YFV/L peptides. Moreover, molecular and functional studies on Ciona tachykinin (Ci-TK) have revealed the novel molecular mechanism of inducing oocyte growth via up-regulation of vitellogenesis-associated protease activity, which is expected to be conserved in vertebrates. Furthermore, a series of studies on Ciona GnRH receptor paralogs have verified the species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors. These findings confirm the remarkable significance of ascidians in investigations of the evolutionary processes of the peptidergic systems in chordates, leading to the promising advance in the research on Ciona peptides in the next stage based on the recent development of emerging technologies including genome-editing techniques, peptidomics-based multi-color staining, machine-learning prediction, and next-generation sequencing. These technologies and bioinformatic integration of the resultant "multi-omics" data will provide unprecedented insights into the comprehensive understanding of molecular and functional regulatory mechanisms of the Ciona peptides, and will eventually enable the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of chordates.


Assuntos
Evolução Biológica , Ciona intestinalis/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Oogênese/fisiologia , Filogenia , Regulação para Cima , Vertebrados/metabolismo
17.
Angew Chem Int Ed Engl ; 52(47): 12313-6, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24115736

RESUMO

Take a breath: An oxygen-tolerant hydrogenase can be employed with a dye in a photocatalytic scheme for the generation of H2 . The homogeneous system does not require a redox mediator and visible-light irradiation yields high amounts of H2 even in the presence of air.

18.
Artigo em Inglês | MEDLINE | ID: mdl-23966979

RESUMO

A G protein-coupled receptor (GPCR) functions not only as a monomer or homodimer but also as a heterodimer with another GPCR. GPCR heterodimerization results in the modulation of the molecular functions of the GPCR protomer, including ligand binding affinity, signal transduction, and internalization. There has been a growing body of reports on heterodimerization of multiple GPCRs expressed in the reproductive system and the resultant functional modulation, suggesting that GPCR heterodimerization is closely associated with reproduction including the secretion of hormones and the growth and maturation of follicles and oocytes. Moreover, studies on heterodimerization among paralogs of gonadotropin-releasing hormone (GnRH) receptors of a protochordate, Ciona intestinalis, verified the species-specific regulation of the functions of GPCRs via multiple GnRH receptor pairs. These findings indicate that GPCR heterodimerization is also involved in creating biodiversity. In this review, we provide basic and current knowledge regarding GPCR heterodimers and their functional modulation, and explore the biological significance of GPCR heterodimerization.

20.
J Insect Physiol ; 59(1): 33-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23207159

RESUMO

Our previous report showed that the pars intercerebralis (PI)-ablated cockroach, Periplaneta americana (PIX), exhibited hypertrophy and a significant increase in α-amylase and protease activities in the midgut under constant darkness (DD). Bath-applied crustacean cardioactive peptide (CCAP) and allatostatin (AST) stimulated α-amylase and protease activities in the dissected midgut cultured in medium. However, the functional relationship and regulatory mechanism between the brain, particularly the pars intercerebralis and the midgut digestive activity remain to be investigated. Here, we investigated the immunohistochemical reactivities (IHCr) against CCAP and AST in the midgut of cockroach subjected to the above operation (PIX-DD). Three types of IHCr cells were observed in both the muscle layer and the epithelium: (1) CCAP-ir only, (2) AST-ir only and (3) both reactivities are colocalized. The number of all three types increased intensively after PIX under DD compared with that of sham operated control that was kept under constant condition (CNT-DD), indicating that the PI suppresses the expression of CCAP and AST in the midgut epithelium. We also showed that co-administration of CCAP and AST to the midgut caused increases of 1.5-fold and 1.4-fold for α-amylase and protease activities, respectively, compared with application of either peptide above. On the other hand, CCAP-ir in the muscle layer was more strongly expressed but AST-ir was suppressed in PIX-DD. While these peptides showed opposite effects on spontaneous contraction, when epithelially released, these peptides both activated the digestive enzyme system. Overall, up-regulated AST-6 and down-regulated CCAP in the stomatogastric nerve in the muscle layer produce the same end result, that is, stimulation of digestive activity (hypertrophy) via both enzyme activation and the retarded peristalsis that leads to increased throughput time.


Assuntos
Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Periplaneta/metabolismo , Animais , Cérebro/metabolismo , Sistema Digestório/enzimologia , Sistema Digestório/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Neuropeptídeos/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Periplaneta/enzimologia , Periplaneta/genética , Regulação para Cima , alfa-Amilases/genética , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA